If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2=164
We move all terms to the left:
y^2-(164)=0
a = 1; b = 0; c = -164;
Δ = b2-4ac
Δ = 02-4·1·(-164)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{41}}{2*1}=\frac{0-4\sqrt{41}}{2} =-\frac{4\sqrt{41}}{2} =-2\sqrt{41} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{41}}{2*1}=\frac{0+4\sqrt{41}}{2} =\frac{4\sqrt{41}}{2} =2\sqrt{41} $
| 1/2z+5=-3 | | 82+4x-42=180 | | 2n-5=8n+9 | | 66+3x+39=180 | | X^2+2x-15=180 | | 2(j-7)+-11=3 | | (4x-2)(11x+17)=1810 | | (4x-2)(11x+17)=180 | | 2/3(3x+9)=-2(2x=6)+7 | | -3.8x=-26.6 | | 3x-5+2x+4=360 | | 8m=-13+53 | | 4(8g+8)=7+4g | | 13x-8=9x+20 | | 14x+2+13x+16=180 | | (2x-12)/5=8 | | 3w+10=5w-2(w-5) | | Y=-2.75c+20 | | N=-2.75c+20 | | 56=2h+10 | | 9y-11y+8=4y+20 | | 10m=-45+95 | | 6x-300=180 | | 4x+2+x=7x-4 | | .75x-12=9 | | 80=10(u+3) | | 2(0)-y+7=0 | | 9x+9+9x+9+50=360 | | n/4+-8=20 | | 35x+12=107 | | 20-y/2=2y | | x2=(x+4)(x−4)+16 |